Results

Results: CSF samples obtained in 21 evaluable subjects were analyzed by the Genotypic Resistance Assay (Gilead Sciences, Foster City, CA) for the detection of mutations conferring resistance to LPV/r. Table 1 depicts the results of the drug susceptibility testing of LPV/r subjected to high concentrations of CSF. The data demonstrate that the use of LPV/r resulted in a significant decrease in viral load in all but one subject. In 10 of 11 subjects LPV/r given as single-agent therapy effectively controlled viral replication in the CSF compartment. This study demonstrated that single therapy with LPV/r suppressed CSF viral loads in all but one subject. Concentrations of LPV in the CSF were above the proposed LLOQ of 0.5 ng/mL with variability < 10%.

Discussion: The use of LPV/r as a single agent has been shown to be effective in the treatment of HIV-1 infection. However, the efficacy of this therapy in the CSF compartment has not been well-established. This study provides evidence that LPV/r is effective in suppressing HIV-1 replication in the CSF of patients with HIV-1 infection. The results of this study suggest that LPV/r may be a viable therapeutic option for the treatment of HIV-1 infection in the CSF compartment.

Conclusion: In conclusion, the use of LPV/r as a single agent in the treatment of HIV-1 infection is effective in suppressing HIV-1 replication in the CSF compartment. Further studies are needed to evaluate the long-term efficacy and safety of LPV/r as a single agent in the treatment of HIV-1 infection.